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Elastic scattering of low-energy electrons by N2O?
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Abstract. We report elastic integral, momentum transfer and differential cross sections for electron scat-
tering by N2O for energies up to 50 eV. These results were obtained at the static-exchange approximation
with the Schwinger Multichannel Method with Pseudopotentials [M.H.F. Bettega, L.G. Ferreira and M.A.P.
Lima, Phys. Rev. A 47, 1111 (1993)]. In general our results show good agreement with experimental data
and with other theoretical results but some discrepancies are found. We have also found a 2Π shape res-
onance around 4 eV in agreement with previous calculations using the R-matrix Method of Sarpal et al.
[J. Phys. B 29, 857 (1996)]. On the other hand, the existence of a 2Σ resonance at about 13 eV, clearly
seen by the Schwinger Variational Iterative Method [Michelin et al., J. Phys. B 29, 2115 (1996)], can not
be confirmed by our calculations. At this energy, our 2Σ cross sections show a broad bump with no clear
resonant behavior given by the eigenphase sum.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.Gs Molecular excitation
and ionization by electron impact

1 Introduction

The modeling of the basic processes that occur in a dis-
charge environment, that are used to generate cold plas-
mas, involves the knowledge of the elastic and inelastic
cross sections resulting from the collisions of the low-
energy electrons and the molecules present in this envi-
ronment. To deal with such a problem, there are several
methods in current use that are able to give reliable cross
sections [1,2]. However, due to computer limitations, the
applications of these methods have been restricted to lin-
ear and small polyatomics targets.

The simplification of the scattering calculations has
been proposed recently with the implementation of
soft norm-conserving pseudopotentials [3] (PP) into the
Schwinger multichannel method [4,5]. The role played by
the PP is to replace the core electrons of each atom in
a molecule, and only the valence electrons are considered
in the calculations. Besides, the norm-conserving PP pro-
duce valence wave functions that are smooth and node-
less, and as a consequence they can be fitted with basis
sets containing a small number of functions (in our case
Cartesian Gaussian functions). Several applications of this
method have been done in elastic and inelastic calculations
[6]. Norm-conserving PP have also been implemented in
the Kohn method [7].

In the last years, several studies concerning scattering
of electrons against N2O have been done due to its appli-

? Dedicated to Prof. Luiz Guimarães Ferreira on the occasion
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cation in lasers, cold plasmas and the upper atmosphere.
Measurements of total cross sections [8,9], elastic integral
and differential cross sections [10–12] have been performed
as well as calculations of integral and differential cross
sections [13–15]. Sarpal et al. [13] applied the polyatomic
R-matrix method to study elastic scattering of electrons
by N2O at the static-exchange and at the static-exchange
plus polarization levels of approximation, in order to study
the shape resonance that they found to be due to the 2Π
state of the negative ion. They also studied the influence of
the target correlation in the description of this resonance.
A 2Σ shape resonance around 10 eV was found when they
included polarization effects in their calculation. Miche-
lin et al. [14] applied the Schwinger variational iterative
method to study elastic scattering of electrons by N2O at
the static-exchange approximation and the distorted-wave
method to study electronic excitation to the lowest 1,3Π
states of N2O by electron impact at the 2-state level of
approximation. In their static-exchange calculations they
found a shape resonance around 13 eV at the 2Σ chan-
nel from l = 1. Morgan et al. [15] applied a polyatomic
code, also based on the R-Matrix method, to study the
2Π shape resonance. Their static-exchange results agree
with those of Sarpal et al., but they have not found any 2Σ
resonance below 10 eV, even when they included polariza-
tion effects. In this paper we report integral, momentum
transfer and differential cross sections for elastic scattering
of low-energy electrons by N2O for energies up to 50 eV.
We have used the Schwinger multichannel method with
pseudopotentials (SMCPP) at the static-exchange (SE)
approximation. Since N2O has a small permanent dipole
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moment, we did not use the standard Born closure to com-
plete the scattering amplitude in order to describe the
higher partial waves, as Michelin et al. [14] did. The SMC
(SMCPP) method uses only L2 functions to describe the
scattering wave function and therefore the long range po-
tential due to the dipole interaction in truncated. As a
result the differential cross sections are meaningful above
certain scattering angles (the DCS diverges in a forward
direction) [16,17].

This paper is outlined as follows. The theoretical for-
mulation of SMC (SMCPP) method is presented in Sec-
tion 2. Section 3 presents the computational procedures.
The results and discussion are presented in Section 4. Sec-
tion 5 ends with a brief summary.

2 Theoretical formulation

The SMC [4,18] and SMCPP [5] methods have been dis-
cussed in earlier works, and we will review here only some
key steps of these methods. The SMC method is a multi-
channel extension of the Schwinger variational principle.
Actually it is a variational approximation for the scatter-
ing amplitude, where the scattering wave function is ex-
panded in a basis of (N + 1)-particle Slater determinants

|Ψk〉 =
∑
m

a±m(k)|χm〉 (1)

and the coefficients a±m(k) of this expansion are then varia-
tionally determined. The resulting expression for the scat-
tering amplitude in the body frame is

[fki,kf ]=−
1

2π

∑
m,n

〈Skf |V |χm〉(d
−1)mn〈χn|V |Ski〉 (2)

where

dmn = 〈χm|A
(+)|χn〉 (3)

and

A(+)=
Ĥ

N + 1
−

(ĤP + PĤ)

2
+

(V P + PV )

2
−V G(+)

P V. (4)

In the above equations Ski , solution of the unperturbed
Hamiltonian H0, is the product of a target state and a
plane wave, V is the interaction potential between the in-
cident electron and the target, |χm〉 is an (N+1)-electron
Slater determinant used in the expansion of the trial scat-
tering wave function, Ĥ = E − H is the total energy of
the collision minus the full Hamiltonian of the system,
with H = H0 + V , P is a projection operator onto the
open-channel space defined by target eigenfunctions |Φl〉

P =

open∑
l

|Φl〉〈Φl| (5)

and G
(+)
P is the free-particle Green’s function projected on

the P -space.

For elastic scattering at the static-exchange approxi-
mation, the P operator is composed only by the ground
state of the target |Φ1〉

P = |Φ1〉〈Φ1| (6)

and the configuration space |χm〉 is

{|χm〉} = A|Φ1〉|ϕi〉 (7)

where |ϕi〉 is a 1-particle function represented by one
molecular orbital.

With the choice of Cartesian Gaussian functions to
represent the molecular and scattering orbitals, all the
matrix elements arising in equation (2) can be computed

analytically, except those from 〈χm|V G
(+)
P V |χn〉 (VGV),

that are evaluated by numerical quadrature [18].
The numerical calculation of the matrix elements from

VGV represent the more expensive step in the SMC code
and demand almost the entire computational time of the
scattering calculation. These matrix elements are reduced
to a sum of primitive two-electron integrals involving a
plane wave and three Cartesian Gaussians

〈αβ|V |γk〉 =

∫ ∫
dr1dr2α(r1)β(r1)

1

r12
γ(r2)eik·r2 (8)

and must be evaluated for all possible combinations of α,
β and γ and for several directions and moduli of k. We
must also evaluate the one-electron integrals of the type

〈α|V PP |k〉 =

∫
drα(r)V PP eik·r. (9)

These one-electron integrals are more complex than those
involving the nuclei, but they can be calculated analyti-
cally and their number is also reduced due to the smaller
basis set. In the above equation, V PP is the nonlocal pseu-
dopotential operator given by:

V̂ PP (r) = V̂core(r) + V̂ion(r), (10)

with

V̂core(r) = −
Zv

r

[
2∑
i=1

ccorei erf
[
(αcorei )

1/2
r
]]
, (11)

and

V̂ion(r)=
1∑

n=0

3∑
j=1

2∑
l=0

Anjlr
2ne−αjlr

2
+l∑

m=−l

|lm〉〈lm|, (12)

where Zv is the valence charge of the atom and in this
application it is equal to 5 for N, and 6 for O. The coef-
ficients ccorei , Anjl, and the decay constants αcorei and αjl
are tabulated in reference [3].

Even for small molecules, a large number of the two-
electron integrals must be evaluated. This limits the size
of molecules in scattering calculations. In the SMCPP
method we need shorter basis set to describe the target
and scattering and consequently the number of two elec-
tron integrals is smaller than in the all-electron case. The
reduction in the number of these integrals allows the study
of larger molecules than those reachable by all-electron
techniques.
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Table 1. Cartesian Gaussian functions (defined by φlmn =
Nlmn(x−ax)l(y−ay)

m(z−az)
n exp(−α|r−a|2)) for nitrogen

and oxigen.

N O
Type Exponent Exponent Coefficient

s 17.567340 16.058780 1.0
s 3.423615 5.920242 1.0
s 0.884301 1.034907 1.0
s 0.259045 0.316843 1.0
s 0.055708 0.065203 1.0
p 7.050692 10.141270 1.0
p 1.910543 2.783023 1.0
p 0.579261 0.841010 1.0
p 0.165395 0.232940 1.0
p 0.037192 0.052211 1.0
d 0.403039 0.756793 1.0
d 0.091192 0.180759 1.0

3 Computational procedures

The ground state of the N2O molecule is described by the
valence electronic configuration 4σ2 5σ2 6σ2 1π4 7σ2 2π4

(X1Σ+). The basis functions we used in the description
of the valence part of the target state |Φ1〉 and to describe
the scattering orbitals |ϕi〉 are shown in Table 1. These
functions were generated by a variational procedure [19],
being suitable for these pseudopotential calculations. Our
calculated dipole moment is 0.63 Debye and the results
of references [13,14] are 0.87 and 0.68 Debye respectively.
The experimental dipole moment is 0.16 Debye. All cal-
culations were performed in a fixed-nuclei static-exchange
approximation at the experimental equilibrium geometry.

4 Results and discussion

In Figure 1 we present our calculated integral cross sec-
tion. We compare our results with the theoretical results
of Sarpal et al., obtained with the polyatomic R-matrix
method at the static-exchange approximation, with the
theoretical results of Michelin et al. [14], obtained with the
Schwinger variational iterative method (SVM), with total
cross section measurements from reference [8] and with
elastic cross section data from references [10,11], obtained
by the integration of the (extrapolated) differential cross
sections. We have not included the SE results of Morgan
et al. [15], obtained with a polyatomic code also based on
the R-Matrix method, because these results are very close
to those of Sarpal et al. Our results agree, at low energies,
with the results of Sarpal et al., that includes only the con-
tribution of Π and Σ symmetries, and for E ≥ 10 eV with
the experimental data. The theoretical results of Michelin
et al. lie above all the other results, except at high en-
ergies, where they cross the results of reference [8]. They
found a resonant behavior around 13 eV. For E < 10 eV,
the discrepancies between theory and experiment are, in
principle, due to the polarization effects that are not take
into account in these calculations. The integral cross sec-
tion of Sarpal et al. show some structures above 10 eV.
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Fig. 1. Integral cross section for N2O. Solid line, our results;
dotted-dashed, theoretical results from reference [14]; dashed
line, results from reference [13]; triangles, experimental results
from reference [10]; circles, experimental results from refer-
ence [11], crosses, experimental results from reference [8].

These structures do not appear in our results nor in other
results shown in Figure 1. In particular, our results follow
the shape of total cross section measurements of refer-
ence [8], and agree very well with them for E ≥ 10 eV,
indicating that the elastic cross section gives the major
part of the total cross section. The the sum of the Π and
the Σ symmetries gives the major part of the elastic cross
section, as the results of Sarpal et al. [13] shown.

In Figures 2 and 3 we show the symmetry decomposi-
tion of the integral cross section of Figure 1 for Π and Σ
symmetries, where the inset in each figure shows the re-
spective eigenphase sum, and compare with the results of
Sarpal et al. We also found a 2Π shape resonance around
4 eV, as shows our calculated eigenphase sum. Although
the position of the resonances are slightly shifted between
each other and apart from the structures that appear in
the polyatomic R-matrix results, there is good agreement
between both calculations. Our 2Σ cross sections show a
broad bump around 10 eV with no clear resonant behavior
given by the eigenphase sum.

Figure 4 shows our momentum transfer cross section
and the experimental data of references [11,10]. Our re-
sults describes correctly the shape of the experimantal
data, but the agreement is only qualitative. The momen-
tum transfer cross sections from references [11,10] were
obtained by the integration of the extrapolated DCS. In
Figures 5, 6 and 7 we show our differential cross sections
(DCS) at 5, 7.5, 8, 10, 12, 15, 20, 30 and 50 eV. We found
good agreement with experimental data, except at low en-
ergies (E < 10 eV) and low scattering angles (θ <∼ 30◦),
where our results deviate from the experimental data. In
our calculations we do not include polarization effects nor
complete the scattering amplitude with the Born closure
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Fig. 2. Partial decomposition of the integral cross section for
the Π symmetry. Solid line, our results; dashed line, results
from reference [13]. The inset shows the eigenphase sum.
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Fig. 3. As in Figure 2 for the Σ symmetry.

to describe the higher partial waves. The lack of polariza-
tion effects explains the differences, in the DCS, between
our results and the experimental data below 10 eV. The
lack of the dipole potential (included via Born closure)
explains the differences at low scattering angles. Michelin
et al. have combine their SVM amplitude with Born clo-
sure and therefore they should be able to reproduce the
DCS at low scattering angles, for energies where polariza-
tion is not important. We found good agreement between
our DCS and the calculated DCS of Michelin et al. only
for E ≥ 30 eV. In our opinion, the results of Michelin
et al. are not fully converged. At 30 eV both theoretical
results agree very well with each other but diverge from
experiment at high scattering angles. In general, the SE
approximation works very well at this energy and this dis-
crepancies may not be attributed, at least in principle, to
this approximation. We have also observed this kind of
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Fig. 4. Momentum transfer cross section. Solid line, our re-
sults; triangles, experimental results from reference [10]; circles,
experimental results from reference [11].
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Fig. 5. Differential cross sections for N2O at 5, 7.5, 8 and
12 eV. Solid line, our results; dotted-dashed line, theoreti-
cal results from reference [14]; dotted line, theoretical results
from reference [15]; triangles, experimental results from refer-
ence [10]; circles, experimental results from reference [11].

discrepancies in other molecules, as in H2S, for example.
Although our calculations do not include polarization ef-
fects, our static-exchange DCS in general agree with the
DCS of Morgan et al., that include polarization effects.
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Fig. 6. Differential cross sections for N2O at 10, 15, 20 and
30 eV. Solid line, our results; dotted-dashed line, theoreti-
cal results from reference [14]; dotted line, theoretical results
from reference [15]; triangles, experimental results from ref-
erence [10]; circles, experimental results from reference [11];
diamonds, experimental results from reference [12].
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Fig. 7. Differential cross sections for N2O at 50 eV. Solid line,
our results; dotted-dashed line, theoretical results from refer-
ence [14]; triangles, experimental results from reference [10];
circles, experimental results from reference [11].

5 Summary

In this paper we reported calculated integral, momentum
transfer and differential cross sections for scattering of
low-energy electrons by N2O at the static-exchange level
of approximation. We have used the Schwinger multichan-
nel method with pseudopotentials. We found reasonably
good agreement with with experimental data and with
other theoretical results. We found that the elastic cross
section is responsible for the major part of the total cross
section, and that the shape resonance is due to a 2Π state

of the negative ion, which agree with the previous calcu-
lations of Sarpal et al.
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